
Journal of Statistical Physics, Vol. 84, Nos. 3/4, 1996 

McKean-Vlasov Limit for Interacting 
Processes in Random Media 

Paolo Da i  Pra I and Frank den Hollander 2 

Received May 25, 1995; final October 9, 1995 

Random 

We apply large-deviation theory to particle systems with a random mean-field 
interaction in the McKean-Vlasov limit. In particular, we describe large devia- 
tions and normal fluctuations around the McKean-Vlasov equation. Due to the 
randomness in the interaction, the McKean-Vlasov equation is a collection of 
coupled PDEs indexed by the state space of the single components in the 
medium. As a result, the study of its solution and of the finite-size fluctuation 
around this solution requires some new ingredient as compared to existing 
techniques for nonrandom interaction. 

KEY WORDS:  Interacting particle systems; random media; McKean-Vlasov 
equation; large deviations; central limit theorem. 

INTRODUCTION 

In this paper, we consider interacting diffusions and interacting spin-flip 
systems with a mean-field Hamiltonian that depends on a random medium. 
In the thermodynamic limit, the dynamics of a typical particle is described 
by a collection of coupled McKean-Vlasov equations indexed by a medium 
parameter. For finite but large systems there are fluctuations around the 
McKean-Vlasov limit, which are controlled by the random dynamics and 
by the random medium. 

Our approach to the problem is to do a large-deviation analysis for 
the double-layer empirical measure 
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Here, N is the size of the system and 

x; = the path of the ith particle in the time interval [0, T] - [o,r] 

coi= the ith component of the medium 
(0.2) 

Our main results are the following (see Sections 1-3): 

1. We derive a large-deviation principle for LN as N ~  c~, with an 
explicit representation for the corresponding rate function/.  

2. The McKean-Vlasov limit is the associated law of large numbers, 
i.e., the McKean-Vlasov equation follows from result 1 by iden- 
tifying the unique zero of/ .  

3. By a standard contraction argument we derive a large-deviation 
principle for the double-layer empiricalflow 

IN=(l ~ d~.,.',.,o~),E (0.3) 
i= ] [0. T] 

as N ~  ~ and compute the corresponding rate function i. 

4. The second-order fluctuations around the McKean-Vlasov limit 
are identified in the form of a central limit theorem, deduced from 
result 1 via a variational computation. 

The goal of our paper is twofold: 

a. For homogeneous systems, results as in 1--4 have been obtained, 
among others, by Dawson, (7) Kusuoka and Tamura, c~4) Dawson 
and Gfirtner, ~8) Ben Arous and Brunaud, !1) and Feng. ~t~ (See also 
Comets and Eisele ~6~ for models with a so-called "local" mean-field 
interaction.) We show how to generalize the analysis in these 
papers to systems with a random medium interaction. The random 
medium leads to some new ingredients in the analysis. 

b. We want to give an expository presentation of the large-deviation 
approach to this problem area. 

The outline of the paper is as follows. In Section 1 we consider inter- 
acting diffusions and state our theorems for this class of models 
(Theorems 1-4). Section 2 and Appendices A and B are devoted to the 
proof of the results. In Section 3 we consider spin-flip systems and show 
how the results have to be modified (Theorems 5-8). 
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1. D I F F U S I O N S  

1.1. The Model  

Let HN: [~N • Rw ~ • be the N-particle random Hamiltonian given by 

1 N N 
jE. f( Xj-Xi'coi'coj)+ E g(xi;coi) ( 1 . I )  

H N ( X '  t o ) = ~ i .  = 1  i=1 

(x;V v is the state variable and to=(co;)~=l is the medium where x = ,~ ,i= i 
variable. The co; are assumed to be i.i.d, random variables with common 
law p. For  a fixed realization of to, think of x ~ H s ( x ;  to) as a Hamiltonian 
in the components x" with an inhomogeneous mean field interaction 
parametrized by the components co;. The functions f and g play the role of 
a pair potential, resp. external field, and are assumed to satisfy: 

�9 f, f ' ,  f " ,  g, g', g" exist, are bounded, and are jointly continuous in 
all variables (a prime denotes derivative w.r.t, the x variable). 3 

For given to, let x, = (x~)~= 1 be the system of N interacting diffusions 
evolving according to the It6 stochastic differential equations 

dx~ - OHu (x,, to) dt + d~  ( i = 1  ..... N ; t e [ O , T ] )  (1.2) 

where (~)/N= 1 are i.i.d, standard Brownian motions on R. For  every to, (1.2) 
laas a reversible equilibrium measure proportional to expl---HN(x, to)]. 
The initial condition x 0 is assumed to have product distribution 2 | N, with 
}~ having a finite second moment. The time T >  0 is fixed but arbitrary. 
Because f ' ,  g' are globally Lipschitz, (1.2) has a unique (strong) solution 
with continuous trajectories (see Karatzas and Shreeve, 113~ Theorem 2.9). 

We shall write P~v to denote the law of xt0.r  ] =(x,),E[o.r~ given to, 
and W ~  to denote the law of the solution of (1.2) when HN=O (i.e., W 
is the law of a standard Brownian motion starting with initial distribu- 
tion )0. 

The system in (1.2) will be our object of study. We shall identify its 
large-deviation and central limit behavior in the limit as N ~ ~ .  Our main 
results are formulated in Theorems 1-4 in Sections 1.2-1.5 below. 

The assumptions on f, g are stronger than what is actually needed for proving the results in 
this paper. However, they allow us to illustrate the use of large deviations without excessive 
technicalities. A few more restrictions will be imposed later, for the same reason. For the 
medium variables R could be replaced by any Polish space without change in the proofs. For 
the state variables R could be replaced by R '/(d~> 1) with only minor modifications in the 
proof of Theorem 3 in Section 2.3. 
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1.2. Empir ical  Measure  and Large Dev ia t ions  

Define the double-layer empirical measure 

1 ~ (1.3) LN(Xto.T ] , m ) = ~ .  6~.,i0.n.o~, I 
t = l  

This is a random variable taking values in Jh'~(C[0, T] x R), the set of 
probability measures on C[0, T] • • (where C[0, T] is the path space, i.e., 
the continuous functions on [0, T]). In (1.3), the symbol 6y denotes the 
point measure at y, so 

1 Jv 
i L~c(A)=~ y'.=, I{(Xto, Tj,CoqEA}, AcC[O, T] • 

Lemma 1 below gives a representation for P~v in terms of L^,. 

Lemma 1. For given 

dPTv 
d~-N- ~ (x[0, r I ) = exp[NF(Lu(xto, r ], ~))]  (1.4) 

where, for Q~ Jc't(C[0, T] • ~), 

F(Q) = f Q(dxto.r ], &o) 

1 T 

-f 
-�89 f Q(dYto.r ], dn) [ f (Yr -XT;  CO, n)--f(Yo--Xo; CO, n)] 

g(XT; CO) --g(xo; co)] } (1.5) [ 

with f given by 

)~(x; co, 7r) = �89 co, zr) +f(  - x ;  rt, co)] (1.6) 

The proof of Lemma 1 will be given in Section2.1. Note that 
Q-,  F(Q) is nonlinear and contains repeated integrals over the measure Q. 
A simpler representation for F(Q) will be given in Lemma 2 below. 
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The representation in (1.4) is the key to the following large-deviation 
principle (LDP), from which we shall deduce various features of the 
asymptotic behavior of LN as N--* oo. Define 

PN(" ) = ~ /z|176 P~,(LN~ ") (1.7) 

which is the law of LN under the joint distribution of process and medium. 
Note that PN~J#~(J#~(C[O, T] x R)). 

T h e o r e m  1. (PN)N>~ satisfies the LDP with rate function 

I (Q)= H(QI W |  (1.8) 

where H denotes the relative entropy 

dO ( 
H(Q W| = J dQ log d(W| (1.9) 

The proof of Theorem 1 will be given in Section 2.1. Roughly, the 
statement in Theorem 1 means that 

1 
F l o g  PN(A) ~ -- inf I(Q) (1.10) 

Q~A 

Ior large N and for A sufficiently regular. For a precise formulation of the 
LDP we refer to Deuschel and Stroock, c9) pp. 35-36. 

One sees from (1.5) that F = 0  when Hjv=0  (i.e., f , g = 0 ) .  Thus 
H(QI W |  is the rate function for the system without interaction. 

1.3. M c K e a n - V l a s o v  Equat ion  

Before we analyze I(Q), we first give an alternative representation for 
F(Q) in (1.5) that will turn out to be more convenient. For given co e ~ and 
q ~ J/gl ( I~ x R) define 

fl~"q(x) = --I" q(dy, drc) f ' ( y  - x; co, rt) - g'(x; co) (tel-O, T ] , x E • )  

(1.11) 

Let p,o.Q be the law of the unique (strong) solution of the one-dimensional 
It6 equation 

dx, = fl~ dt+d~,  (1.12) 
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where ~, is a standard Brownian motion on R and Xo has law 2. Here H, Q 
is the projection of Q at time t, i.e., 

(H,Q)(E• coeF}), E, F c •  (1.13) 

For fixed r the drift in (1.12) has a mean-field form, i.e., the interaction 
in (1.2) of a single-component diffusion with the other components and 
with the medium appears in (1.12) as an average w.r.t, the given measure 
/-/, Q. 

L e m m a  2. For all Q 

dp~O, Q l" 

F(Q) = I Q(dx[o,r], dco) log (Xto.r]) -7-#- 
J 

(1.14) 

The proof of Lemma 2 will be given in Section 2.2. By combining (1.8), 
(1.9), and (1.14) we get the following simpler representation for the rate 
function: 

C o r o l l a r y  1. For all Q 

I (Q)=H(QIP Q) (1.15) 

where PQ~,/gt(C[O, T] x R) is defined by 

PQ(dxt0, r], do)) = #(do)) P~"Q(d.'cto" rl) (1.16) 

Since I(Q)>~O for all Q, one sees from (I.10) that as N---, oe the 
measure PN tends to concentrate around the zeros of L i.e., the solutions 
of 

Q = p e  (1.17) 

The next theorem states that (1.17) has a unique solution. Define 
vQe J6(N) to be the projection of Q on the medium coordinate, i.e., 

vQ(F) = Q( { (Xto, r], co): co ~ F} ) (FE R) (1.18) 

Let Q~162 T]) be the regular conditional probability measure 
obtained from Q after conditioning on co, i.e., 

Q(dxto. r], dco) = vQ(dco) Q"(dxto" r]) (1.19) 
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The results that follow will be proved under the following assumption on 
the initial measure 2 for the single-component diffusions4: 

(A1) 2 has a density ~ w.r.t. Lebesgue measure satisfying 
q~ E Ll (dx)  n LP(dx) for some p > 1. 

T h e o r e m  2. Assume (A1). Then (1.17) has a unique solution Q,  
which has the following properties: 

1. v q• =p.  
2. Q~ is the law of a Markov diffusion process for p-a.s, all 09. 

3. Let q~' = H , Q , .  Then q~O is the weak solution of the McKean-  
Vlasov equation 5 

q, =L,a"q7 ( t s (0 ,  T],co~ R) (1.20) 

(q0 = 2  

where Ae ~' is the nonlinear operator 

a 1 0 ~- 
~O~q,~= _ax[fl,o.q,qT]+~x2q7 ( a ~  R) (1.21) 

, 
and q, is defined by q,(dx, dog) =/z(dco) qT(dx). 
The diffusion process in 2 has generator L t given by 

a 1 a 2 
L , = fl'~ -~x +-~ &~2 ( co e R ) (1.22) 

The proof of Theorem 2 will be given in Section 2.2. Note that the 
equations in (1.20) for different values of r are coupled, because 

fl~ = - - f  p(dn) f q '~(dy))~'(y-  x; 09, n ) - g ' ( x ;  (o) (1.23) 

depends on the whole family { q , }  ~ ~ ~ [see (1.11)]. 

4 Assumption (A1) could in principle be weakened by using the technique of Lyapunov func- 
tions, as in Sznitman. "6~ However, we stick to (AI) because it allows us to give a rather 
elementary proof.of uniqueness of the solution of (l.17). 
Equations ( 1.20)-( 1.21 ) mean that 

at q~'(d.x')c~(x)= q~'(dx)fl'~ qt(dx)~"(x) 

for every ~b e ~ ,  the space of infinitely differentiable functions with compact support. By 
standard arguments this implies that q~O for t > 0 has a density that is a classical solution of 
(1.20). 

S22/84/3-4-27 



742 Dai Pra and den Hollander 

As a corollary to Theorems 1 and 2, we obtain the following law of 
large numbers: 

Corollary 2. Assume (A1). Then 

P N ~ 6 Q ,  weakly as N ~ o o  (1.24) 

1.4. Empir ical  F l o w  and Large Dev ia t ions  

With each QeJ/eI(C[0, T] x R) is associated the flow of marginals 
q[o, rl =(H,Q),~[o.r].  Define the double-layer empirical f low 

(1.25) 

This is a random variable taking values in ~a'l(R x R) t~ (The topology 
on this power set is the one induced by the weak topology on 
J4(C[0 ,  T] x R) via the map Q--* qto.rl.) Note that both qto.rj and lN 
take values in the subset of o#1(N x R)[~ r] consisting of those flows whose 
projection on the medium coordinate is independent of t. We shall denote 
this subset by Jg. The empirical flow lu contains less information than 
the empirical measure LN [recall (1.3)]. Therefore its large-deviation 
behavior can be obtained from Theorem 1 via the contraction principle 
(Varadhan, tlT~ Theorem 2.4). 

To formulate the LDP for ( lu)u~l we introduce the following nota- 
tion. For q[o,r] � 9  let qt~ be the conditional flow given co, i.e., 

q,(dx, dco) = vq(dco) qT(dx) (t �9 [0, T]) (1.26) 

where v q is the projection of q, on the medium coordinate (which is 
independent of t). Let 9 be the space of infinitely differentiable functions 
with compact support, and let 9 "  be its dual (the elements of which are 
distributions). For ~k* E 9 "  and p �9 Jel(R ) define the norm 

II~*ll~ = 1  sup <O*, ~>2 
2 0 ~ :  <e.*'-'> >o <P, ~b"-> 

(1.27) 

where <. > denotes the usual inner product. Let zl c Jr  be the set of all 
flows satisfying 

v q ~ #  

t ~ q~' is weakly differentiable for vq-a.s, all co 
(1.28) 
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Finally, let 
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~oN(" ) = I la|176 P~v(IN ~ ") (1.29) 

which is the law of l N under the joint distribution of process and medium. 
Note that ~oNe J/~(J/).  

T h e o r e m  3. (g0N)N>~I  satisfies the LDP with rate function 

2 t dt vq(m) & q~" - Sf~ ,o + H( 
II qt j 

i(qt~ = / if qto, r l e A  

\ ~ otherwise 

vqlp) 

(1.30) 

The proof of Theorem 3 will be given in Section 2.3. Note that 
i(qE0,r~)=0 iff vq=p and q~' is the solution of the McKean-Vlasov 
equation for p-a.s, all co [recall (1.20), (1.21), and (1.23)]. 

1.5. Central Limit Theorem 

It is possible to deduce from Theorem 1 a central limit theorem (CLT) 
for the empirical measure L~ in (1.3). The general technique is formulated 
by Bolthausen) 2~ Essentially, what we must do is show that the rate func- 
tion Q ~  I(Q) in (1.8) and (1.15) has a strictly positive and finite curvature 
at its unique zero Q, .  However, in order to apply Bolthausen's theorem we 
need a technical assumption, namely6: 

(A2) There are functions 0c~,fl~: R x ~ C  and numbers C i ~  + 

such that 

f ( y - x ;  09, ~) = ~. c~o~i(x, co) fli(Y, ~) 
i=O 

(1.31) 

with (1) Z i  c ;<  oo; (2) ai, f l i  twice continuously differentiable w.r.t, the 
variable x, resp. y; and (3) ~ ,  a~, 0c~', fli, fl~, fl~' bounded uniformly in i. 

6 By applying the techniques in Sznitman? ~6~ the CLT could in principle be proved without 
Assumption (A2). However, (i) Bolthausen's method nicely connects large deviations and 
CLT; (ii) the proof is easily modified to cover other models, e.g., spin-flip systems (see 
Section 3 ); (iii) Assumption (A2) is satisfied in many interesting examples [ e.g., the Kuramoto 
model, f (x; to, n) = --Kcos x ,  g ( x ;  co) = --xco; see also Ben Arous and Brunaud, It~ Section 1.1, 
for a discussion of this assumption and more examples]. 
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Our central limit theorem reads: 

T h e o r e m  4. Assume (A2). Let ~r be the set of bounded continuous 
functions from C[0, T] x g~ to R. As N--, oo the field 

( N ' / ' - [ f ~ d L N - - f ~ d Q , l ) r  (1.32) 

converges under PN to a Gaussian field with covariance 

C(~, ~b) = f Q,(dx[o.r], dco) ~b[Q,](Xto.r ], co) ~b[ Q, ] (x t0 . r ] ,  co) (1.33) 

where 

~[ Q,](Xto, Tl, co) 

='k(Xto, ~ ,  co)-'k* 

(1.34) 

f, t~o,.mQ, ds (which is a with ~b* = ~ ~b dO. (similarly for ~), w 7 = x , -  jo ~" 
Brownian motion under Q,) ,  and f given by (1.6). 

The statement in Theorem 4 means the following: for ~b 1, ~b2 ..... ~b,, ~ cg b 
the vector 

(g l /2[ f~ idZN-- f~ ida . l )~;=,  (1.35) 

converges in law to an n-dimensional Gaussian random variable with mean 
))"  . zero and covariance matrix (C(dp i, ~.~ i.j= 1 

The proof of Theorem 4 will be given in Section 2.4. From the proof  
it will be seen that the covariance matrix is strictly positive definite. 

2. PROOF OF L E M M A S  1 A N D  2 A N D  T H E O R E M S  1-3 

2.1. Proof  of Lemma 1 and T h e o r e m  1 

Proof  of  Lemma 1. The proof is based on two basic tools in 
stochastic calculus, namely Girsanov's formula and It6's rule (see, e.g., 
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Karatzas and Shreve, ~13) Theorems 3.3.3 and 3.5.1). Girsanov's formula 
yields [recall (1.2)] 

d-W "~--~dP~ [ IA'[r(OHN2 J| \ 0x ~ )2 (xEo.r~)=exp - ,~l'= (x,, o)) dt 

--i=l J0 \ OX i (Xt'(d0)/ (2.1) 

Under the measure W ~ the process Xto.r I is N-dimensional Brownian 
motion (see Section 1.1). Thus, by It6's rule, 

) (x,, co) ax~ 
i=l "" 

T ( OZH N 
1 ~  ~o \0(x') 2 = H N ( x r , ~ ) - H N ( x o ,  tO) -~ i= l  (x , ,~) , /a t  (2.2) 

Hence 

d--~-~N(Xto.n)=exp -- ~i_~ O--~7-v ~(x ' '~  - - - -  

--(HN(x r, o ) -  Hlv(X o, O))] 

02 H lv } 
0(x,)2 (x,,co) dt 

(2.3) 

The rest of the proof simply consists in inserting the definition of HN [ see 
(1.1)] and rewriting the resulting expression in terms of the empirical 
measure LN [see (1.5)]. This leads to the expression given in (1.4)-(1.6). | 

Proof of Theorem 1. Let R N be the law of L N under the measure 
w|174 | Under RN, the pairs a (xEo.r], of) are i.i.d, random variables. 
It therefore follows from Sanov's Theorem (Deuschel and Stroock, ~9) 
Theorem3.2.17) that (RN)N~>1 satisfies the LDP with rate function 
H(Q[ W| given in (1.9). Now, using Lemma 1, we have [recall (1.4) 
and (1.7) ] 

PN(" )-= I / t  | JV(dto) P~v(Lu(dxto, r~, o~) c �9 ) 

N dP~v =I~| ~ W| (dxt0.Tl) a ~ ( x t o . ~ )  

x I{LN(dx[0,T], O) ~ .} 
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=fd( W|174 | exp[NF(Lu)] I{LN~ -} 

= f Ru(dQ) exp[NF(Q)] 1 { Q ~ �9 } (2.4) 

Identity (2.4) means that 

dPu 
dRN (Q) = exp[ NF( Q)] (2.5) 

Our assumption on f , g  in Section 1.1 imply that F is a bounded con- 
tinuous function w.r.t, the weak topology in ./g~(C[0, T] x R) [see (1.5)]. 
Therefore, (2.5) allows us to apply Varadhan's Lemma (Varadhan, 1~71 
Theorem 2.2) and conclude that the LDP for (RN)N>~I with rate func- 
tion H(QIWQp) implies the LDP for (PN)N~ with rate function 
H(QI WNp)-F(Q),  as was claimed in (1.8) and (1.9). | 

2.2. P roof  of  L e m m a  2 and T h e o r e m  2 

Proof of Lemma 2. We begin by applying Girsanov's formula to the 
one-dimensional It6-equation in (1.12), namely 

log ~ (xt0.r]) = - ~ (fl~"n'Q(x,))'-dt+ fl~"me(x,)dx, (2.6) 

We want to show that the r.h.s, of (2.6), when integrated over 
Q(dxto.r], do)), yields F(Q) given in (1.5). Recalling (1.11 ), we see that the 
first term in the r.h.s, of (2.6) gives rise to the first term in the r.h.s, of(1.5). 
To check the remaining terms, let us look a bit closer at the stochastic 
integral in (2.6). 

By (1.11 ) we have 

f Q(dxto.r , do)) f:fl'~ dx, 

= - f  Q(dxto.r J, do)) 

x Q(dyro.r],dn)f(y,-x,,o),rc)+g(x,;o)) dx, (2.7) 

[Note that if Q~ w| then XtO, T J is a Q-semimartingale, so the 
stochastic integral in (2.7) makes sense.] Consider the first term in the 
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r.h.s, of (2.7). Since f '  is an odd function of its first argument, this term 
equals 

T , 

x f0 f (y , - -x , ;co,  n) [dx,-dy,]  (2.8) 

We can apply It6's rule to the two-dimensional semimartingale (x, Y)t0.rl 
and write 

d f (y , -  x,; co, rr) = f " ( y , -  x,; to, 7r) d t -  f ' ( y , -  x,; co, rr) dx, 

+ f ' ( y , - -  x,; 09, n) dy, (2.9) 

By substituting (2.9) into (2.8) we get the expression 

x f"(y,-x,;co,~)dt-f(yr-Xr;Co, Tr)+f(yo-Xo;CO, zO (2.10) 

Next consider the second term in the r.h.s, of (2.7). It6's rule yields that this 
term equals 

[ 2  ] - f  Q(&co, rj,dco) -�89 g"(x,;co) dt+g(xr;OO)-g(xo;eO) (2.11) 

From (2.10) and (2.11) the claim in Lemma 2 easily follows after observing 
that (1.6) gives 

f Q(dx[o. r], &o) f Q(dy[o" rl, d n ) f ( y , -  x,; co, n) 

= f  Q(dx[~176 f Q(dy[o.r],d*t)f(y,-x,;co, lr) (2.12) 

for every t and, in particular, for t = 0 and t = T. I 

Proof of Theorem 2. Observe that v e = v pQ =/~ [ recall ( 1.16)-(1.18) ] 
and that po,,Q is the law of the solution of (1.12), i.e., the Markov diffusion 
with generator given in (1.21). It is therefore easy to see that properties 1-4 
in Theorem2 are satisfied by any solution of (1.17) [note that (1.20) is 
the Fokker-Planck equation associated with the diffusion Q . ] .  Now, the 
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existence of a solution of (1.17) comes from the general fact that the rate 
function of an  LDP must have at least one zero [Deuschel and Stroock, wl 
Exercise 2.1.14(i)]. The uniqueness of the solution will be proved in 
Appendix A. 1 

2.3. P r o o f  of  T h e o r e m  3 

Let H denote the map H: Q--* q[o, rl (remember that q, = H, Q). The 
topology on ~ t  has been chosen in such a way that H is continuous. Since 
Iw=HLN, it follows from the contraction principle (Varadhan, 1~7~ 
Theorem 2.4) that (gaN)N~ satisfies the LDP with rate function 

J(qto.r])= inf I(Q) (2.13) 
FIQ = q[ o, T] 

We want to show that J(qt0. T] )=  i(q[o, rq) for every qt0, T] 6 J///', where i is 
the rate function given in (1.30). In order to do so, we shall first show that 
equality holds when J(qto.rl) < oo (Steps 1-3 below). After that we shall 
show that if i(q[o.r])< ~ ,  then J(qto.r])< ~ (Step4 below), which will 
complete the proof. The basic ideas are taken from F611mer (~2) (see also 
Brunaud(4)). 

Step 1. By a standard argument involving lower semicontinuity 
and compactness of the level sets of the rate function I, we have that 
if j(q[o,T])<oO, then there exists a Q such that HQ=q[o,T] and 
I(Q) =J(qto, r]). From (1.8) we have 

I(Q) = ~ vq(dco) H(Q'~ I4/) + H(vqll~)-F(Q) (2.14) 

Moreover, since F(Q) depends on Q only through q[o.q [see (1.5) and 
(1.14)] we have that Q"~ minimizes H(Q~ W) under the constraint 
l-IQ~=qE~ for vq-a.s, all co. As shown by F611mer, 1'2) Theorem 1.31, the 
latter fact implies that Q~' is the law of a Markov diffusion 

dx, = b~'(x,) dt + dw, (2.15) 

for a suitable drift b;~ and that 

H(Q~ I I4I) = Q~ dt [b, (x,)]-  (2.16) 
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Substituting (2.16) into (2.14), and using Lemma 2 in combination with 
(2.6) and (2.15), we obtain 

I ( Q ) =  �89 f l)q(do))f Q~~ 
T 

x Io dt [b~'(x,) - fl~ + H(v q Ilz) 

=�89176 

+ H(vqlp) (2.17) 

This equation reduces to the required expression in (1.30) if we can show 
that for every t e (0, T] and for vq-a.s, all co 

1 I ~q~O i q,(dx)(b~f(x)_flo,.n,Q(x))2= _~,Oq~, (2.18) 

Step 2. To prove (2.18) we proceed as follows. According to (2.15), 
q)O is the weak solution of the Fokker-Planck equation 

Oq'fl 0 1 02 
Ot - Ox [bTq~'] +5~x  2q~' (2.19) 

Together with (1.21) this implies 

9 ,o 9 [ ( b ~  o _ f l , o , n , Q )  q . ]  (2.20) 

Hence, recalling the definition of LI" IL in (1.27), we get 

Oq7  s176 ' 2 1 <(bT_fl,o.n,Q) q~,, ~,>2 
- -  = - sup 

,17 2 ,~e: <q..,':> >o <q7 , ~b'2> 

1 .<~ <q., (b. _/~.,Q)2> (2.21) 

where we hav~ used the Cauchy-Schwarz inequality (recall that < . , .  > 
denotes the usual inner product). Thus, to get (2.18) we must show that in 
(2.21) equality is attained. 

Step 3. It suffices to show that the set {~b': ~be~} is dense in L2(qT) 
for all t and vq-a.s, all co. We first note that q t  is absolutely continuous 
w.r.t. Lebesgue measure for all t and vq-a.s, all o9 (this follows from the fact 
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that Qr W| v q ~#, and the marginals of W are absolutely continuous 
w.r.t. Lebesgue measure). So, it is enough to prove that ifp is an absolutely 
continuous probability measure on R, i.e., p (dx)=p(x)  dx, then {~': ~b ~ ~} 
is dense in L'-(p). 

The proof is by contradiction. Suppose {q~': ~be~} is not dense in 
L2(p). Then there exists h ~LZ(p) such that 

f • ' ( x )  h(x)p(x)dx=O for every ~ b ~  (2.22) 

Since hpeL~(dx), it follows from Brezis, ~3) Lemma8.1, that there exists 
Ce R such that hp-  C a.s.w.r.t. Lebesgue measure. If C =  0, then clearly 
h - 0  p-a.s. On the other hand, if C r  then hpCLt(dx). 

Step 4. To complete the proof of Theorem 3 we need to show that 
if i(q[o.r])<oo, then j(qto.r3)<~. We use F611mer, 1121 Theorem 1.31, 
where it is observed that there exists a countable number of bounded con- 
tinuous functions (q~;)i~> ~ from R x R to R and a countable (dense) subset 
(t~)~>, of [0, T] such that HQ = q[o.rl if and only if 

f H,,Q(dxco.r ] , (pi(x, c o ) ( i = 0 ,  (2.23) dco ) = 0  1, 2,...) 

Now, by compactness and lower semicontinuity of H, for every n >/0 there 
exists a Q,, such that H(Q,,I W |  ov and Q,, minimizes H(Q[ WQp) 
under the constraint that (2.23) holds for i =  1, 2,...,17. Since we have 
proved that i(q[o.r])=J(qeo.r]) when j(qEo.rl) < ~ ,  it follows from (2.13) 
that 

l(Q,,)=inf{i(Pto.rl): ~ p~,(dx,, dco)(~i(x, co) = 0 for i = I,..., n t (2.24) 

In particular, I(Q,,)<~i(q[o.rj). By compactness of the level sets o f / ,  the 
sequence (Q,,),,>., has a limit point Q which, by lower semicontinuity of L 
satisfies I(Q)<<. i(qeo.r]). Moreover, (2.23) holds for Q. Hence, via (2.13) we 
get j(qto.r])<<.l(Q)<<.i(qto, T]). II 

2.4.  P r o o f  of  T h e o r e m  4 

The proof essentially amounts to applying the method developed by 
Bolthausen t2~ to the random variables 

Xi = 6~.,.b .n.,Ol ~ ( i=  1 ..... N) (2.25) 

Strictly speaking, this method only applies to random variables taking 
values in certain "nice" Banach spaces, namely Banach spaces of type 2 
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(such as LP-spaces with 2 <~p < oo). Unfortunately, J#~( C[0, T] x R) is not 
in this class. However, this problem can be circumvented via a trick due to 
Ben Arous and Brunaud, t'~ which consists in mapping Jg1(C[0, T] x R) 
into a Banach space of type 2. In this section we formally compute the 
covariance operator according to Bolthausen's recipe (Steps 1-3 below) 
and check its strict positivity (I-II below), which is the key to having a 
central limit theorem. The change-of-variable trick, which provides rigorous 
justification for what is done here and which requires the use of Assump- 
tion (A2), is given in Appendix B. 

Step 1. We start by letting v, be the law of the ~t',(C[0, T] x R)- 
valued random variable 6-,-t0.q,~o~- Q, induced by Q,.  For 
R~~ T ] x • )  and eecg b we write r162  and r 1 6 2  
The fi'ee covariance operator (F(r ~b))+.~,~6~ is defined by 

~) = f r ~b(R) v,(dR) V(r 

= E e . {  [ r ' T~, o)) - r  ] [ ~(Xto" ~j, o)) - ~ *  ] } 

-- Cove.(r ~) (2.26) 

The meaning of this operator is that the field 

converges, under Q,ON as N--, 0o, to a Gaussian field with covariance 
F(r ~). This follows from the standard central limit theorem for i.i.d. 
R-valued random variables. 

Step 2. For a given eeCgb, let eeJ//o(C[0, T ] x R )  be the signed 
measure on C[0, T] x ~ with zero total mass defined by 

= I Re(R) v,(dR) (2.28) 

i.e., for A c C[ 0, T] x R measurable, 

(~(A) = f R(A) r v,(dR) 

= f Q.(dx[o.r], do)) [O,xco.rl,o~,(A ) - Q.(A)][C(X[o" 

= COVQ.(1A, r 

T~, o ) ) - r  

(2.29) 
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where 1A is the characteristic function of A. Then Bolthausen's theorem 
states that [modulo the change-of-variable trick and some regularity 
assumptions on the function Q ~ F ( Q )  in (1.5), all to be discussed in 
Appendix B] the field in (2.27) converges, under PN as N ~  ~ ,  to a 
Gaussian field with covariance 

A(~b, ~b)=F(~, ~k)--DZF(Q,)[$, ~] 

(recall Lemma 1), provided zl(q~, ~ ) > 0  for all ~ such that ~ 0 .  

Step 3. We remark that 

(2.30) 

F((~, ~)= D2H(Q, I g,] (2.31) 

as is easily proved from (I.9) via direct computation [see also (2.34)]. 
Here the second derivative DZH is defined in the usual directional sense 
(Fr6chet derivative). By combining (2.30) and (2.31) with 1.8), we get 

. )  ^ 

zl(fb, ~b ) = D-I( Q,)[ ~, ~ ] (2.32) 

Thus the requirement A(~b, ~b)> 0 can be interpreted as saying that the rate 
function Q ~ I(Q) must have strictly positive finite curvature at its unique 
minimum Q,.  

The rest of the proof consists in showing the following two facts. Let 
C(~b, ~b) be the covariance defined in (1.33). Then 

I. C(q~, r r 

II. C(~b, ~b) > 0 for all ~b such that ~ ~ 0 
(2.33) 

Proof of  I. For simplicity we assume ~b = ~. The proof for the general 
case follows the same argument. 

We first note that, by (2.29), ~ < Q, and 

= ~b - ~b* (2.34) 
dQ, 

Using the expression [recall (1.14) and (2.6)] 

F(Q)=E Q -�89 (fl'~ fl~ (2.35) 
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we get, by a lengthy but straightforward computation via (1.11), 
T 

D'-F(Q)[~, ~] = -E ~ fo [Y~ dt 

--2 ~)(dX[o.r], &o) f:  fl~ y~ dt 

+ 2 f ~(dx[o,r],dco) f:,~~ 

with 

753 

(2.36) 

Y~  = f 4;(dYt~ & )  ' '  ' " f ( ) , - x ,  co, n) (2.37) 

[The computation becomes elementary once we realize that, due to (2.34), 
the It6 integrals make sense under ~.] 

Now let 

,v, ~' fl~~ ds w,'= 
--'JO 

(which is a Brownian motion under Q,). Then by (2.26), (2.30), (2.34), 
and (2.36) we have 

a(ek, q~)= r(ck, d~)- DZF( Q.)[~, ~] 

= EO*{ [ rk(XEo, r,, r -(b* ]2} + EO* { f:  [y'~ ]2 dt} 

+ 2EQ" {[ ck(Xto, vj, CO) --ck* ] I: y~ dw,} 

= EO~ [ ~(XEo.r,, eo)-e~* ]2} + EO* {[ ; Yo"n"~(x,) dw, ] =} 

+2E~176 

=E~ } 
= C(~b, ~b) (2.38) 
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where in the second equality we have used the s tandard isometry property 
of integration w.r.t. Brownian motion. 7 | 

Proof of II. Suppose q~ e cg h is such that  C(~b, ~ ) =  O. It is not restric- 
tive to assume ~b* =0.  We want to show that q~=O, i.e., ~b = 0  Q,-a.s. Define 
the following a-field on C[O, T] x ~: 

o~=a{x,.:O<~s<~t} |  (2.39) 

with .~ denoting the Borel a-field on I~. Let 

~b,(x[0,, ], co) = EQ*{ ~b ] o~,} (2.40) 

According to ( 1.33)-(1.34), C(~b, ~b) = 0 implies 

q)(X[o.r], Co) = f f  [ f Q.(dy[o.r], drc) ~b(Yto.r], re) 

xfr'(y,-x,;co, n)] dwT' Q,-a.s. (2.41) 

Taking conditional expectation and using the fact that the integral in the 
r.h.s, of (2.41) is an ,r we get 

q~,(."to.,], 'o)= I~ [ f Q,(dyto.r~, drO q~,(Yto.,j, ~) 

^t . ] x f  (y.~.-x, co, z~) dw[ ~ Q.-a.s. (2.42) 

Thus, using again the isometry property of integration w.r.t. Brownian 
motion, we obtain 

, = ze)f(y.,_xs, co, rr ) ,,o I1r IIz:~e,> Q,(dy[o.r], tin) ~b,(y[o.,l, "' " �9 
II L21Q.) 

- E ~  Q.(dy[o, rl,dre)~t(YEo.t],rE)f'(Y.,.-x.,.;co, re)] 2dr } 

~<t I l l '  I1"-~. II~,ll~-'~o.~ (2.43) 

7 Let (wt),~to.r 1 be a Brownian motion. Let (~,),~to.rl be a stochastic process, adapted to the 
filtration generated by (w,),~tO.rl, such that E(Jrod~dt)< oo. Then the following equality 
holds: E(I~~ dt)= E([Jor r dw,]'-). 
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which implies ~b, = 0 Q,-a.s. for t~ [0, l / l lf '  II ~), It is easy to see that this 
argument can be repeated, and so we get ~b,=0 Q,-a.s. for t~ [0, T]. Since 
~bT = ~b the conclusion follows. II 

3. SPIN-FLIP  S Y S T E M S  

All the results stated in Section 1, together with their proofs in Sec- 
tion 2, can be modified in an essentially straightforward manner to cover 
the case of spin-flip systems. In this section we formulate these modifica- 
tions and indicate which parts of their proofs are not trivially obtained 
from the corresponding parts for diffusions. We follow the same order as 
in Section 1. 

3.1 .  T h e  M o d e l  

Let HN: { -- 1, + 1 } N X ~ N  _..1. ~ be the N-particle Hamiltonian given 
by 

1 N N 
~i f(coi, co j) xix2+ ~ g(co ~) x i (3.1) HN(X' t o )= '~ i , . ' = t  i=l 

where x=(x i )~=l  is the state variable and to=(coi)~=t is the medium 
variable. As for diffusions, the co ~ are i.i.d, random variables with common 
law it. Moreover, the functions f ,  g are assumed to be bounded and 
continuous. 

(xq u be the N-spin system defined to be the For given to, let x, = ,, ,,~= t 
Markov chain with infinitesimal generator ~, acting on functions 
tb: { - 1, + 1 } N ~ ~ as follows: 

N 
(fg~b)(x) = ~ C~v(i, x)[~b(x;)-~b(x)] (3.2) 

;=1 

Here, x" is the state obtained from x by flipping the ith spin x", and 

,o 1 cN(i, x)=exp [~ { HN(x, to ) -  Hu(x;, to)} ] 

= e x p  ~ f(coi, coJ)x;xS+g(co;)x ~ (3.3) 
j =  I . jv~i 

with f(co, r0 = f ( w ,  r e )+ f in ,  co). For  every to, (3.2) has a reversible equi- 
librium measure proportional to exp[- - -Hu(x ,  to)-]. The initial condition X o 
is assumed to have product distribution 2 | where 2 is any probability 
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measure on { - 1 ,  +1}. The path space for a single spin is D[0, T], the 
space of right-continuous piecewise-constant functions from [0, T] to 
{ - I, + 1 }. This space has a topology and a Borel a-field, provided by the 
Skorohod metric; see, e.g., Ethier and Kurtz, (]~ p. 117. 

We denote by W | A, the law of the N-spin system whose generator has 
the form (3.2) with c~v = 1. All other notations introduced in Section 1 
(P~r LN, P~,...) are left unchanged. 

3.2. Empirical Measure and Large Deviations 

The analogs of Lemma 1 and Theorem 1 read as follows. 

L e m m a  3. For given (o 

deT. dW| (Xto, rj) = exp[NF(LN(xto, rj ,  (o)) + O( 1 )] 

where for Q~/#I(D[O, T] x [~) 

(3.4) 

t" 

F(Q) = J Q(dxto.r j , dco) 

x{f;dt(l-exp[fQ(dYto.r],drt)f '(m, rt) x, yt+g(co) x,]) 

+ �89 f O(dy[o.r], drr)[f(,o, n)(Xr yr--XoYo)+ g(r 

(3.5) 

The proof of Lemma 3 relies on Girsanov's formula for spin-flip systems, 
which is easily derived from Girsanov's formula for point processes (see 
Comets (s) or Lipster and Shiryaev, (~5) Theorem 19.3). 

Theorem 5. (PN)N~ satisfies the LDP with rate function 

I(Q)= H(QJ W| F(Q) (3.6) 

This follows from Lemma 3 as for diffusions. The technical difference 
is that the martingale term in the Girsanov formula is not driven by a 
Brownian motion, but by a compensated Poisson process. 

3.3. McKean-Vlasov Equation 

Given Q~J/t,(D[O,T]xR) and touR,  let po,.Q be the law of the 
single-spin system whose initial distribution is 2 and whose rate of 
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flipping from x to - x  at time t is given by c~ where for q~ 
J / , ( { -  I, 1} x R )  

In analogy with Lemma 2 and Corollary 1, the next facts are easily proved. 

Lemma 4. For all Q 

dp~,e  
F(Q) = I Q(dxto, r], d~o) log ~ (Xto, r]) (3.8) 

Corollary 3. For all Q 

I(Q) = H(QI P Q) (3.9) 

where P e e ~ l l ( D [ O ,  T] x N) is defined by 

PQ(dx[o,T], do~) =/z(dco) P~'Q(dx[o,r]) (3.10) 

The next theorem is the analog of Theorem 2. Define v ~ as in (1.18). 

Theorem 6. Equation (3.9) has a unique solution Q.  which has 
the following properties: 

1. vQ*=lt. 

2. Q ,  is the law of a Markov chain on { - 1, + 1 } for/l-a.s, all ~o. 

3. Let q~' = H , Q , .  Then q~O solves the differential equation 

t " O _ o~ ,o ( t ~ ( O , T ] , ( o ~ R )  
q7 - s q' (3.11) 

.q~ '=2 

where L '~ is the nonlinear operator 

(&e~q,)(x)  = q , ( - x )  c ~ ' q ' ( - x ) - q ~ ' ( x )  c~'q'(x) (ogeR) (3.12) 

and q, is defined by q,(x, dco) =/~(dog) q.(x). 
4. Under Q~ the rate of flipping from x to - x  at time t for the 

Marko'v chain in 2 is c ~'q'. 

The only essential difference from the proof of Theorem 2 is the part 
concerning the uniqueness of the solution of (3.1 1 ), which is much easier 
here. Indeed, via the relation q~O(_ 1 )+  q~O( + 1 )=  1 for all 09 and t, (3.1 1) 
can be rewritten as an equation for q~O( + 1 ), thought of as an element of 
L'~'(It). The coupled family of equations in (3.11), indexed by coE R, is an 

822/84/3-4-28 
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ordinary differential equation in the Banach space L~ driven by a 
locally Lipschitz vector field. Uniqueness follows by classical arguments 
(Brezis, TM Theorem VII.3). 

3.4. Empirical  F low and Large Deviat ions 

The definitions of l N and ~ag are the same as in Section 1 [-see (1.25) 
and (1.26)]. For p a probability measure on { - 1 ,  +1} x ~  and coeR, 
define 7'p: R I - l '+ l l  ~ R + by 

~p(2)= sup { __~+ 
,5~ R { - I . + ' l  x _1 

1 
[2(x) 3(x) -p~~ c~ d(x)- d(x) - 1 )] 

(3.13) 

where ~(x)= ~(-x)- 6(x). Defining d as in (1.28), we obtain the following 
analog of Theorem 3. 

Theorem 7. (~dN)N~> I satisfies the LDP with rate function 

I ; :  ,o Oq~_zp~Oq~)}+H ( dt {f vq(dco) ~Jq,(-- ~- 

i(q[~ if qto, r]~A 
k. ~ otherwise 

vqlp) 
(3.14) 

For the model without random field a different representation for i is 
given by Comets. (5) 

The proof of Theorem 7 is not a trivial modification of the proof of 
Theorem 3. We therefore give a sketch here (Steps 1-3 below). 

Step 7. Fix a flow qto.r jeA. Suppose that there exists a 
QeJgl(D[O, T] x •) such that I(Q) < ov and Q minimizes/under  the con- 
straint H, Q--q,  for t e [0, T]. Then, as for diffusions, it can be shown that 
Qo, is Markovian for p almost all 09 (e.g., by using the notion of h-process; 
see F611mer, (121 Theorem 1.31). Let us denote by k~~ the flip rate of this 
process at time t. Then from Girsanov's formula for spin processes we get 

I(Q)= ~: dt {f vq(dCo) 

l k . (x )  ~] X ~ (Cr176 kT(x)+kT(x ) } [x= +1 q~~ -- Ogco~.q,(x)JJ (3.15) 
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Stop 2. Write the identity 

q.(x) (c'~ - k . ( x )  + k~'(x) log kT(x) Z 
.,'= +1 c~ 

= sup ~" q;~ 
~ ; e R l - I . + l }  x =  +,1 

- cO'q'(x)(e ~'1 - 6(x) - 1 )] (3.16) 

which is easily checked by noting that the supremum is attained at 6 = 6 ,  
given by O,(x)=log[k~'(x}/c*~ We claim that the r.h.s, of (3.16) 
equals 

sup ~ q~(x)[~(x)(k~(x)--c~'q'(x))--c~'q'(x)(edlX'--~(x) - 1)] 

~l- i .§  .,.= +1 (3.17) 

[which is the same as the r.h.s, of (3.16), but with 6 replaced by fi]. This 
will be shown below. From (3.17), together with the identities 

q.(x) 3(x)[ kT(x)-c~ ] 
x ~  +_1 

= 2  
x ~  +_1 

- 2  
. v ~  __1 

6(x){ q.(x)[k.(x) - c~ ] } 

fi(x) [ ~ q, ( x ) -  Z#~~ (3.18) 

we get I(Q) = i(q[o, rj). The second equality in (3.18) uses (3.11) and (3.12) 
with k ,  replacing c ~ The proof can now be completed as for Theorem 3. 

Step 3. We still have to show that (3.16) equals (3.17), which 
amounts to verifying that 6 ,  = p for some ),e R I-~'+11. This is equivalent 
to saying that Z.,-= +1 6.(x)=0 or 

k~'(x)=cO"q'(x)e ;''" for some 2, ~ lI~ (3.19) 

There are various ways of checking (3.19). The most direct and elementary 
way consists in looking for the minimum of (3.15) [w.r.t. the rates k',~ 
under the constraint 

Oq/(x) 
=q~'( -x)k~ ' ( -x) -q , (x)kT(x) ,  to(O, T] (3.20) 

Ot 

The classical method of Lagrange multipliers shows that the k~ ~ realizing 
the minimum must have the form (3.19) (we already know that the mini- 
mum exists). The details are straightforward. 
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Theorem 7 shows that the large deviations for the empirical flow are 
controlled by the positive convex functions ~up. These are not norms 
squared, unlike the case for diffusions. To appreciate the analogy between 
Theorem 3 and Theorem 7, note that we could have used in Theorem 3 the 
following expression equivalent to (1.27)t81: 

lie*lip = sup{ (~b*, ~b) - �89 ~b'2) } (3.21) 

3.5. Central Limit Theorem 

The CLT for spin systems will be proved under the following assump- 
tion, which, for technical reasons that will be explained in Appendix B, is 
much stronger than the corresponding Assumption (A2) for diffusions: 

(A3) There exist a finite set X c R  and functions ct;,fl;: R ~ X  
(i = 1,..., p) such that 

p 

f(co, r~) = ~ ~,(ro) fli(rt) (3.22) 
i = 1  

We note that Assumption (A3) is satisfied in two relevant cases: (i) when 
f is constant, i.e., the medium does not affect the interaction /-e.g., the 
Curie-Weiss model with f(ro, ~)= -fl, g(~o)= -co] ;  (ii) when the support 
of the medium law/1 is finite. 

For xto.r I ~D[0,  T], we let J,(xt0.rl) be the number of jumps of the 
path Xto. r J up to and including time t. 

Theorem 8. Let ~gb be the set of bounded continuous functions 
from D[0, T] x R to R. As N ~  oo the field 

converges under PN to a Gaussian field with covariance 

C(q~,r Q,(dxto.r3,dco)q~[Q,](Xto. r],a~)r r~,Co) (3.24) 

where 

~b[ a,](Xto, r J, o9) 
= ~(Xto, ~ ,  c o ) - ~ *  

+ f : ( f  Q*(dy[o.r],dx'[q~(Y[o.r],n)-~b']Y,f(~ rt))dw~ ' (3.25) 
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with 4 * =  I ~b dQ.  (similarly for ~b) and 

= J,(Xto, T]) -- ~0 C~ ds W t 

(which is a martingale under Q,).  

The part of the proof of the CLT for diffusions, contained in Sec- 
tion 2.4, extends readily to spin systems. The part concerning the change- 
of-variable trick is sketched at the end of Appendix B. 

A P P E N D I X  A 

We prove here that Eq. (1.17) has a unique solution. We assume (A1): 
the initial measure 2 has a density r w.r.t. Lebesgue measure satisfying 
~b �9 Ll(dx) n LP(dx) for some p > 1. 

Step 7. A Priori Estimate. We first prove that if Q .  is a solution 
of (1.17), then there are constants A > 0 and 0 <~ 0c < 1/2 such that 

A 
q~ ' (x )<~ for every x, c o e R a n d t > O  (A.1) 

where q~' = H,Q' . .  To see this, observe that Q,  = PQ. gives 

dQ,  dP '~ 
d W  d W  (A.2) 

The process having law po,,Q, is a diffusion whose drift fl~,,n,Q, is the 
bounded derivative of a bounded function [recall (1.11)-(1.12)]. By the 
usual argument involving Girsanov's formula and It6's rule, one sees that 
there is a constant B > 0 such that the Radon-Nikodym derivative in (A.2) 
is bounded by B uniformly in co. It follows that 

q,(x)<~B~b,(x) ( t > 0 )  (A.3) 

where ~O, = H, W, i.e., 

1 I e-II/z')c"-:')'-~b(Y) dy q~ ,( x ) = - ~ n t  

By H61der's inequality we have 

<<, - -  e -~q:-')~x-yl2 dy II~bll p - tv2_ 1/2q 

(A.4) 

( a . 5 )  
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with C> 0 some constant and 1/p + I/q = 1. Now (A.1) follows from (A.3) 
and (A.5). 

Step 2. Uniqueness. Let Q and ~) be two solutions of (17), with 
qT' and ~ ,  denoting the corresponding marginals. As mentioned in foot- 
note 5, these are both classical solutions of the McKean-Vlasov equation 
(1.20). Define, for t>0 ,  

F~'(x) = qT(x) - ~'(x) (A.6) 

The following relation is easily checked [see (I.11 ) and (1.20)-( 1.21 )-]: 

OFt 1 02FT=OL'fl 
(A.7) 

Ot 2 0 x  2 Ox 

LT(x) = F~'(x) f dy /t(d~) qT(Y)(f'(Y - x; co, ~) + g'(x; co)) 

where 

+ O,(x) J dylu(dlr)FT(x)(f ' (y-x; co, lr)+g'(x; co)) (A.8) 
t" 

Now let G(x, t) be the fundamental solution of the heat equation, i.e., 

G(x, t) = ~ e -.,-'/2, (A.9) 

Then (A.7) yields 

o 
f~ ' (x )=  ds dyG(x -y , t - S )~yL . '~ ( y )  

= - f s  ds f dy LT(y) ~y ( X -  y, t - s )  (A.IO) 

where the last integration by parts is justified since, for co ~ N and t > O, 
L~(x) is a bounded function of x. Now define 

H 7' = f [F~~ dx (A.11) 

By substituting (A.I )  into (A.8), one obtains the following estimate: 

f]L';'(x)[dx<~AHT'+Bfl2(d.)H~/t ~ for aU co and t (A. 12) 
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with A and B suitable constants independent of t. Moreover, by direct 
computation one sees that there is a constant K such that 

. lOG ] K fora l ly  (A.I3) f -~y(X-y,t-s)dx<~/t_-----~s 

Putting together (A.10)-(A.13) and defining H, = ~r we get 

f, 1 H, H,<~Cjos~ ~ ds (tel-0, T]) (A.14) 

with C some constant independent of t. Below we shall show that (A.14) 
implies H,---0. We complete the proof by showing how the latter implies 
Q = 0 .  Indeed, if H , = 0 ,  then (A.6) and (A.11) give qT(x)=#7(x) for all 
t and for almost every co, x. With Q and Q being solutions of (1.17), this 
in turn implies that for almost every o9 e ~ the diffusions with laws QO, and 
0 '~ have the same bounded and continuous drift and the same initial dis- 
tribution. By standard uniqueness results for stochastic differential equa- 
tions, it follows that Q,O= ~,o co-a.s., and so Q = ~. 

Step 3. H, = O. Let us define 

IIHIL,= sup Hs (A.15) 
s e [ 0 , t ]  

By (A.14) 

f2 H s <~ C IIHII, ds 
S ~ J l  - -  S 

Now, because e < 1/2 we have 

f2 lim - - d s  = 0 
t~O S~VI--S 

forall s t [ 0 ,  t] (A.16) 

(A.17) 

This, together with (A.16), implies that there exists t '>  0 such that H, = 0 
for t e  [0, t']. Using (A.14) again, we obtain 

C r' ds 
H, < j,. , /  t _  s (A.18) 

It is trivial to see that 

lim ds = ,~;  '~ / t - -s  0 (A.19) 
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and so there must exist t" > 0 such that H, = 0 also for t ~ [ t', t' + t" ]. This 
argument can be repeated to show that H , = 0  for t e  [t' +t",  t' + 2t"] and 
so on. Hence H,-= 0. 

We remark that a < 1/2 in (A.1) is a consequence of our assumption 
(AI) on the initial condition 2. By removing that assumption we would get 

= 1/2 and the proof  would not work. 

APPENDIX B 

The proof of Theorem 4 will be completed here, i.e., we carry out the 
change-of-variable trick which provides the rigorous justification for the 
formal computation in Section 2.4. We first give an outline of the proof, 
which is based on Claims 1-4 below. The proof  of these claims comes later. 
At the end of this Appendix we show what modifications are needed for 
spin-flip systems. 

Let Jg(C[0,  T] x R) be the vector space of signed measures on 
C[0, T] x R, provided with the weak topology. 

Claim 1. There exists a Banach space (B, II II), a continuous linear 
map T:J/(C[O,  T] xl~)---,B, and a continuous map 7 ' : B ~ R  that is 
bounded on T(,,#~(C[O, T] • •)) and infinitely Fr&het differentiable, such 
that 

aPT~ 
dW|  (Xto, r I ) = exp[ N~U( T(LN))] (B.1) 

Moreover, R a n g e ( T * ) c  c~, where T*: B* ~ (J#(C[O, T] x R))* is the 
adjoint map of T. 

Next, let 

Yi = T(6c,.~o.rv,,,q) (i = 1 ..... N) (B.2) 

and denote by PN and wN the laws of Y = ( Y~ ,..., YN) induced by PN, resp. 
W |  t| Then it follows from (B.1) that 

dpN - -  (Y) = exp[N~g(MN)] (B.3) 
d w  N 

with M N = N  -1 zN=I Yi. 
As we shall see later, the Banach space (B, ]1" II) in Claim 1 satisfies the 

requirements of Bolthausen's theorem [see (B.11) below], which can there- 
fore be applied to the random variables Y; with the help of (B.3). 
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Moreover, by the Contraction Principle, the pmlaw of MN satisfies the 
LDP with rate function J(Y) = infylQ~= rI(Q), which has a unique zero at 
Y, = T(Q,). 

To compute the covariance of the corresponding CLT, we begin by 
defining a probability measure p on B by putting 

dp (Y) 1 
d~,- ~ = ~, exp[ D~U( Y,)[ Y]] (B.4) 

where w is the law of T(fi .,.torl., o ) induced by W|  D is the Fr6chet 
derivative, and Z is the normalizing constant. 

Cla im 2. The measure p is the law of 7"(6 .,.t,jrv,oO induced by Q, .  

Next, let p , = p - Y , .  For h, keB*  define 

y(h, k) = 

~= 

p,(dY) h(Y) k(Y) 

p,(dY) Yh(1I) e B 

(B.5) 

Cla im 3. Let F be as in (2.31). The following identities hold: 

A A 

y(h, k) = F( T'h, T'h-) = Dell(Q,)[ T'h, T'h] 

= T( T*"~q ( B.6 ) 

D2T( Y,)[h, ~:3 = D2F( Q,) [  T*"~h T*'-k] 

Thus, by what was shown in Section 2.4 (proof of H), we have 
~,(h, ~ ~ - h)--D-~(Y,)[h ,h]>O unless h-=0. It follows from Bolthausen's 
theorem that, under the p~ law as N ~  co, the field 

converges weakly to a Gaussian field with covariance [recall (2.38)] 

9 ~ ~ A y(h,k)-D-~(Y,)[h,k]=D'-I(Q,)[~h r*h]=C(r*h, T'k) (B.8) 

To complete the proof of Theorem4 it therefore suffices to show the 
following fact. 
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Claim 4. For given ~b~ ..... ~b, eCgb, n ~ N ,  the Banach space (B, It 'll) 
and the map T can be constructed in such a way that {~b z ..... ~b,} c 
Range( T* ). 

We next proceed with the proof of Claims 1-4. 

Proof of  Claims 1 and 4. By redefining the functions cci, fl; in 
Assumption (A2), it is clear that instead of (1.31) we may also write 

- f ( y - x ; c o , ~ ) - g ( x ; c o ) =  ~ GoLi(x, co)fl~(y,z~) (B.9) 
i=0 

[where (c~ i, fl~, c,.);>~o have the properties described in Assumption (A2)]. 
Substituting (B.9) into (1.5), we get 

'So (s ) F(Q) = -~_ dt cic s Q(dxto.r I , dco) ~(x , ,  co) ~j(x,, co) 

i 

(S 

Next, denote by c the finite measure on N given by c({ i } )=  c~. We intro- 
duce the following Banach spaces: 

BI = L 3 ( N 2 x  [0, T], c|174 

B,=L2(IN x [0, T], c|  
(B.11) 

B 3 =LZ(N w { - 1 ,  - 2  ..... - n } ,  c+d~_t + ... +c~_,,) 

B = (B 1)3 • (82)2 • (83)4 
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The norm II. II on B will be chosen to be supremum of the norms on the 
factors. An element Ye B will be written 

r = ( v ' , ,  Y~, r~, g~, Y~_, r~, Y3, y3, y4) (B.12) 

The map T: Jr T ] •  is now defined as follows: For i, j e N  
and t e [ 0 ,  T] 

T(Q) 11 (i, j, t) = f Q(dxto, r I , dco) o~;(x,, co) o~)(x,, co) 

T(Q)~ (i, j, t) = I Q(dxto.r], do)) fli(x,, co) 

T(Q)~ (i, j, t) = I Q(dx[o.v], dco) flj(x,, ~o) (B.13) 

T(Q)~ (i, t) = f Q(dxto, r ], dco) o~'(x,, co) 

T(Q)~_ (i, t) = f Q(dxto, r a, do~) flax,, co) 

For i~ ~, 

T(Q)~ (i) = ; Q(dx[~ do9) e,(Xr, co) 

T( Q)3 (i) = f Q(dxto.T ~ , do)) flAXr, co) 

T(Q) 2 (i) = f Q(dx[o.r], do9) oti(Xo, co) 

T(Q) 4 (i)= f Q(dxto.T l , dco) flAXo, co) 

For i=  1, 2,..., n and k =  1,2, 3,4 

T(Q)k3 ( - i ) =  f Q(dxto, r ~ ,dco) ~bi(xE0.r ~, co) 

(B.14) 

(B.15) 
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A straightforward compu ta t i on  (which we omit)  allows us to get an explicit 
(but ra ther  long) formula  for the ope ra to r  

T*: B* = (B*) 3 x (B~) 2 x (B~) 4 ~ ( J g ( C [ 0 ,  T]  x O~))* 

f rom which it easily follows that  R a n g e ( T * ) c c g b .  Moreover ,  we see f rom 
(B.15) that  

$, .= T*(0,  0, 0, 0, 0, 0, 0, 0, l l_~  I ) (B.16) 

which proves  Claim 4. 
Fo r  YE B define 

~ ( Y ) =  -~fN (dc|174 rl 
- 2 •  [ O . T ]  

--l fN (dc| Y~ Y~_ 
• [0 ,  T]  

+~f dc(r~3 r2 3y4) 
_ 3 - -  Y3 . (B.17) 

Clearly, ~P is cont inuous  and infinitely Fr6chet  differentiable. Moreover ,  
g~ is bounded  on T(,/~6(C[O, T] x •)) because the componen t s  of  T(Q) 
are bounded  uniformly in Q~JII(C[O,T]x~). Finally, (B.10) and 
(B.13)-(B.15) imply that  F(Q)=~(T(Q)) (note that  F extends to all 
~J//(C[0, T] x •)). This proves  Claim 1. s II 

Proof of Claim 2. The main  step in the p roo f  is the relat ion 

dQ, 
DF(Q,)[61.,.to.r>,,,) ] = log d ( W |  (X[o. r ] ,  m) 

for W| all (Xto.r 1, co) (B.18) 

This relation is easily obta ined from (1.5) by direct compu ta t i on  using the 
Gi r sanov  formula.  We omit  the details. 

By (B.18) and the fact that  T is l inear and cont inuous,  we have 

D T (  Y , ) [  T(ac,,to.n.,o)) ] = DF( Q , ) [  ~,,-t0.n.,~)] (B.19) 

8 As we mentioned earlier, Bolthausen's theorem can be used with no further assumption in 
Banach spaces of type2 (see Ben Arous and Brunaud I~ for the precise definition). Now, 
L&spaces with 2 ~< p < cc are of type 2, and finite products of Banach spaces of type 2 are 
again of type 2. Thus our (B, I1"11) defined in (B.II) is a Banach space of type 2. 
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Thus, for any p: B ~ I~ measurable and bounded, (B.4) gives 

f p(dY) p(Y) 

= 1 f w(dY) p(Y) exp{ D~( Y,)[ Y]} 

dQ, 
= 1 f ( W |  ~ , &o)p(T(6,.,.to.n.~,)) d(W| (xt~ ,o) 

=�89 f o.(,.co ,.ol (B.2o  

Letting p ~  1, we get Z =  1. | 

Proof of Claim 3. Using Claim2 and the 
operator, we have 

y(h, k) = f p(dY) h( Y -  r , )  k( Y -  Y,) 

= Q,(dxto.r 1, dog) h(T(dc,.to.r~.,o ) 

definition of adjoint 

- Q,)) k(T(6c,.to.rj.,o~- Q,)) 

= Q,(dxto, T ~, &o) [T*h(xto.7 q, r 

x [ T*k(xto" r~, o9) - EQ-,(T'k) ] 

= 1"( T 'h ,  T ' k )  (B.21) 

Similarly, 

h=~ p(dY) ( Y -  Y,) h( Y -  Y*) 

= ; Q,(dxto.r3, &o) T(fc,.t0.n.o~l- Q,) h(T(do:to.rl,o~ I - Q,)) 

= T ( f  Q,(dxto.r~,dc~ (6~.,.t~.rj,o~,-Q,) T*h(dc,.to.~,,o,-Q,) ) 

= T(T*h) (B.22) 

where we again use the notation (T*h)(Q) for j (T*h) dQ. The third 
identity in (B.6) follows from the second and the fact that T is linear and 
continuous. | 
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We finally sketch the corresponding change-of-variable trick for spin- 
flip systems. We only show the key part of the construction, which consists 
in defining a linear continuous map T from Jc'(D[0, T] • R) to a Banach 
space (B, I1-11) of type2 and a smooth function 7t: B--, 1~ such that 
F =  7'o T. The rest of the proof is a simple modification of what we have 
done above for diffusions. 

In order to avoid unnecessary complications, we shall explain the 
construction for the function F '  defined by 

F ' ( Q )  = ~ Q(dx{o" r], dog) 

T ] 
X~o dtexp Q(dyEo.r3,drr)f(co, n) x , y  , (B.23) 

The extension of our construction from F'  to F [defined in (3.5)] is 
straightforward. 

In the above argument for diffusions, we were able to map 
./g(C[0, T ] •  to a Banach space (B, I1-11) that is a finite product of 
LP-spaces with p >~ 2 and therefore is a Banach space of type 2. In doing so, 
we used the fact that the function F(Q) in (1.5) is "polynomial" in Q [i.e., 
F(2Q), 2 ~ R, is a polynomial in 2]. Such a property holds neither for F in 
(3.5) nor for F '  in (B.23). Here is where Assumption (A3) plays a crucial 
role. Since the function {--1, + l } x R ~ l ~  given by (X, CO)l-'~.It'OLi(O) ) 
assumes only finite values, we can find a q ~ ~ and smooth functions ~bj, C j, 
j = I ..... q, such that for all z e R 

q 

e~"'~ = ~ ~bj(xcr ~bj(z) ( i =  1 ..... p) (B.24) 
j = l  

Substituting (3.22) into (B.23) and using (B.24), we find 

X I-[ i i dT~) y t f l , ( ~ )  ~Oj(x,ct,(co)) ~bj Q(dYto.r~, 
i = 1  j f f i l  

f[0,s ] = ~ fo dt Q(dxto.~,dco) . 
j, ..... jp = I 

i = 1  

(B.25) 
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Note  tha t  the a rguments  of  the funct ions ~b~. in (B.25) are b o u n d e d  
uniformly in Q. Thus  it is not  restr ict ive to assume these functions and  all 
their  der ivat ives  to be bounded .  We now define 

B =  (Lp+I)& @(LP+I) p (B.26) 

The n o r m  [1-]1 on B is t aken  to be the s u p r e m u m  of  the norms  on the 
factors. An e lement  f E B  is wri t ten in the form 

f =  ( ( f l ,~) ,  (2~ ( f  , ))j~{l,,..,q}'l--.P},iE{l,...,p} (B.27) 

The maps  T: J # ( D [ 0 ,  T]  x R) ~ B and 7s: B ~ I~ are  defined by 

T(Q)I'~ (t) = f Q(dxto, r 1, &o) 

P 
] 7  i . ~,/,(~x,~,(co)) (j~{1 ..... q} I'.-...,)) • 

i = l  

T(Q)~ 2~ ( t ) =  f Q(dYt~ drc) y , f l , (n)  ( i t  {1 ..... p} )  

(B.28) 

~ ( f ) =  dt f ( l l ( t )  ~bj,(f i ( t))  ~j 
j i = 1  

It is easily seen that  T is l inear  and  cont inuous .  Moreover ,  the smoothness  
of ~ follows from the fact tha t  the funct ions r and  their  der ivat ives  are 
Lipschitz cont inuous .  Final ly ,  it is clear  that  F '  = ~ o  T and that  B, being 
a finite p roduc t  of  L~-spaces,  is of  type 2. 
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